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Squeezed Vector and Its Phase Distribution
in a Deformed Hilbert Space
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In this paper we study squeezed vectors, squeezed Kerr vectors, and their phase distri-
butions in a deformed Hilbert space.

1. INTRODUCTION

Two-photon processes are extremely interesting in quantum optics, for the
high degree of correlation between the photons in a pair may lead to the genera-
tion of nonclassical states of the electromagnetic field such as squeezed states or
number states. This system offers a unique chance to study the interaction of a
single mode of the electromagnetic field with a source of correlated pairs of pho-
tons under controlled conditions. Squeezed states are the eigenstates of a linear
combination of annihilation and creation operators of electromagnetic field. These
are pure quantum-mechanical states of light, which have reduced fluctuations in
one field quadrature when compared with coherent states. These states are stud-
ied extensively (Mehtaet al., 1992) as they can considerably reduce noise in any
signal. These states are also known as two-photon coherent states.

In generalizing two-photon processes in a deformed Hilbert space, we face
a setback as the conventional Weyl–Heisenberg approach of defining squeezing
operator to genereate squeezed vector fails. We adopt the idea of Solomon and
Katriel (1990) to generate squeezed vector in the deformed Hilbert space.

The work is organized as follows. In Section 2, we discuss preliminaries
and notations. In Section 3, we discuss generation of squeezed vectors inHq. In
Section 4, we define squeezed Kerr vectors inHq, its coherent vector representation
and quasiprobability distribution of squeezed Kerr vectors. In Section 5, after
briefly describing phase vectors inHq we study phase distribution of squeezed
and squeezed Kerr vectors. In Section 6, we give a conclusion.
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2. PRELIMINARIES AND NOTATIONS

We consider the set

Hq =
{

f : f (z) =
∑

anzn where
∑

[n]! |an|2 <∞
}
,

where [n] = (1− qn)/(1− q), 0< q < 1.
For f, g ∈ Hq, f (z) =∑∞n=0 anzn, g(z) =∑∞n=0 bnzn, we define addition

and scalar multiplication as follows:

( f + g) (z) = f (z)+ g(z) =
∞∑

n=0

(an + bn)zn (1)

and

(λ ◦ f ) (z) = λ ◦ f (z) =
∞∑

n=0

λanzn. (2)

It is easily seen thatHq forms a vector space with respect to usual point-
wise scalar multiplication and pointwise addition by (1) and (2). We observe that
eq(z) =∑∞n=0 zn/[n]! belongs toHq.

Now we define the inner product of two functionsf (z) =∑anzn andg(z) =∑
bnzn belonging toHq as

( f, g) =
∑

[n]! ānbn. (3)

Corresponding norm is given by

‖ f ‖2 = ( f, f ) =
∑

[n]! |an|2 <∞.
With this norm, derived from the inner product, it can be shown thatHq is a
complete normed space. HenceHq forms a Hilbert space.

In a recent paper (Das, 1998, 1999a) we have proved that the set{zn/
√

[n]! ,
n = 0, 1, 2, 3, . . .} forms a complete orthonormal set. If we consider the actions

T fn =
√

[n] fn−1 and T∗ fn =
√

[n+ 1] fn+1 (4)

onHq, whereT is the backward shift and its adjointT∗ is the forward shift operator
onHq and fn(z) = zn/

√
[n]!, then the solution (Das, 1998, 1999a) of the following

eigenvalue equation:

T fα = α fα (5)

is given by

fα = eq(|α|2)
−1/2

∞∑
n=0

αn

√
[n]!

fn. (6)

We call fα acoherent vectorin Hq.
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3. GENERATION OF SQUEEZED VECTORS

Squeezed vector is generated by the action ofT − αT∗ on an arbitrary vector
fβ in Hq (Solomon and Katriel, 1990) and which satisfies the following equation:

(T − αT∗) fβ = 0, (7)

where

fβ(z) =
∞∑

n=0

anzn =
∞∑

n=0

an

√
[n]! fn(z) (8)

or,

fβ =
∞∑

n=0

an

√
[n]! fn.

We have

T fβ =
∞∑

n=0

an

√
[n]!T fn

=
∞∑

n=1

an

√
[n]!

√
[n] fn−1 (9)

=
∞∑

n=0

an+1

√
[n+ 1]!

√
[n+ 1] fn

and

αT∗ fβ =
∞∑

n=0

αan

√
[n]!T∗ fn

=
∞∑

n=0

αan

√
[n]!

√
[n+ 1] fn+1

(10)

Now from (7)–(10) we observe thatan satisfies the following difference
equation:

an+1

√
[n+ 1]!

√
[n+ 1] = αan−1

√
[n− 1]!

√
[n]. (11)

That is,

an+2 = α
√

[n]!√
[n+ 2]!

√
[n+ 1]√
[n+ 2]

an (12)

and

a1 = 0. (13)
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Hence,

a2 = α
√

[0]!√
[2]!

√
[1]√
[2]

a0

a4 = α
√

[2]!√
[4]!

√
[3]√
[4]

a2 = α2

√
[2]!
√

[0]!√
[4]!
√

[2]!

√
[3]
√

[1]√
[4]
√

[2]
a0

a6 = α
√

[4]!√
[6]!

√
[5]√
[6]

a4 = α3

√
[4]!
√

[2]!
√

[0]!√
[6]!
√

[4]!
√

[2]!

√
[5]
√

[3]
√

[1]√
[6]
√

[4]
√

[2]
a0.

and so on. Thus,

a2n = αn 1√
[2n]!

[2n− 1]!!√
[2n]!!

a0

and

a1 = a3 = a5 = · · · = a2n−1 = 0.

Thus, fβ satisfying (7) has the form

fβ =
∞∑

n=0

an

√
[n]! fn = a0

∞∑
n=0

αn

√
[2n− 1]!!

[2n]!!
f2n. (14)

To normalize, we have

1= ( fβ, fβ) = |a0|2
∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!
. (15)

Thus, aside from a trivial phase we have

a0 =
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2

(16)

and the squeezed vectorfβ takes the form

fβ =
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

αn

√
[2n− 1]!!

[2n]!!
f2n. (17)

4. SQUEEZED KERR VECTORS

Squeezed Kerr vectorφK
β in Hq is defined by

φK
β = e

i
2γ N(N−1)
q fβ, (18)

where fβ in Hq is a squeezed vector given by (17),γ is the Kerr constant and
N = T∗T, T is the backwardshift (4).
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Now,

φK
β = e

i
2γ N(N−1)
q fβ

= e
i
2γ N(N−1)
q

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

αn

√
[2n− 1]!!

[2n]!!
f2n

(19)

=
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

αn

√
[2n− 1]!!

[2n]!!
e

i
2γ [2n]([2n]−1)
q f2n

=
∞∑

n=0

{[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2

αn

√
[2n− 1]!!

[2n]!!
e

i
2γ [2n]([2n]−1)
q

}
f2n.

4.1. Coherent Vector Representation

To obtain the coherent vector representation of squeezed Kerr vectorφK
β we

try to calculate the matrix element (fα′ , φK
β ) that contains all important information

about the vectorφK
β .

The matrix element is obtained by the following elegant method (Kr´al, 1990).
We utilize the completeness relation (Das, 1998, 1999a) of coherent vectors inHq

I = 1

2π

∫
α∈C�

dµ(α) | fα >< fα|, (20)

where

dµ(α) = eq(|α|2)eq(−|α|2) dq|α|2 dθ (21)

whereα = rei θ , and obtain(
fα′ , φ

K
β

) = ( fα′ ,U fβ)

= 1

2π

∫
α1∈C�

dµ(α1) ( fα′ ,U | fα1 >< fα1| fβ) (22)

= 1

2π

∫
α1∈C�

dµ(α1) ( fα1, fβ)( fα′ ,U fα1)

whereU ≡ e
i
2γ N(N−1)
q .

Now,

( fα1, fβ) =
∞∑

m=0,n=0

eq(|α1|2)−1/2

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2
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× ᾱm
1√

[m]!
αn

√
[2n− 1]!!

[2n]!!
( fm, f2n)

=
∞∑

n=0

eq(|α1|2)−1/2

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2

× 1√
[2n]!

√
[2n− 1]!!

[2n]!!
ᾱ2n

1 α
n (23)

and

( fα′ ,U fα1) = eq(|α1|2)−1/2eq(|α′|2)−1/2
∞∑

n=0

e
i
2γ [2n]([2n]−1)
q

(ᾱ′α1)n

[n]!
. (24)

Hence, we have

( fα1, fβ)( fα′ ,U fα1) =
∞∑

m=0,n=0

eq(|α1|2)−1eq(|α′|2)−1/2

×
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2
1√

[2m]!

√
[2m− 1]!!

[2m]!!

× ᾱ2m
1 αme

i
2γ [2n]([2n]−1)
q

(ᾱ′α1)n

[n]!
. (25)

Thus,

(
fα′ , φ

K
β

) = 1

2π

∫
α1∈C�

dµ(α1) ( fα1, fβ)( fα′ ,U fα1)

=
∞∑

m=0,n=0

eq(|α′|2)−1/2

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2
1√

[2m]!

×
√

[2m− 1]!!

[2m]!!
αm (ᾱ′)ne

i
2γ [2n]([2n]−1)
q

1

[n]!

1

2π

×
∫
α1∈C�

dµ(α1) eq(|α1|2)−1ᾱ2m
1 αn

1

=
∞∑

m=0,n=0

eq(|α′|2)−1/2

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2
1√

[2m]!
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×
√

[2m− 1]!!

[2m]!!
αm(ᾱ′)ne

i
2γ [2n]([2n]−1)
q

1

[n]!

1

2π

∫ ∞
0

dqr 2 eq(−r 2)r 2m+n

×
∫ 2π

0
dθ ei (n−2m)

=
∞∑

n=0

eq(|α′|2)−1/2

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2
1√

[2n]!

√
[2n− 1]!!

[2n]!!
αn

× (ᾱ′)2ne
i
2γ [4n]([4n]−1)
q

1

[2n]!

∫ ∞
0

dqr 2 eq(−r 2) (r 2)2n

=
∞∑

n=0

eq(|α′|2)−1/2

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2
1√

[2n]!

√
[2n− 1]!!

[2n]!!
αn

× (ᾱ′)2ne
i
2γ [4n]([4n]−1)
q

1

[2n]!

∫ ∞
0

dqx eq(−x)(x)2n

=
∞∑

n=0

eq(|α′|2)−1/2

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2
1√

[2n]!

√
[2n− 1]!!

[2n]!!
αn

× (ᾱ′)2ne
i
2γ [4n]([4n]−1)
q , (26)

where we have takenx = r 2 and utilized the fact
∫∞

0 dqx e−x
q xn = [n]! (Gray and

Nelson, 1990).

4.2. Quasiprobability Distribution

Thequasiprobability distribution, known as theQ function, for the squeezed
Kerr vector is introduced in the following form:

Q(α1) = 1

π

(
fα1,

∣∣φK
β >< φK

β

∣∣ fα1

)
= 1

π

(
fα1,

(
φK
β , fα1

)
φK
β

)
= 1

π

∣∣( fα1, φ
K
β

)∣∣2 (27)

= 1

π

∣∣∣∣∣ ∞∑
n=0

eq(|α1|2)−1/2

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2
1√

[2n]!

√
[2n− 1]!!

[2n]!!
αn

× (ᾱ1)2ne
i
2γ [4n]([4n]−1)
q

∣∣∣∣∣
2

.
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5. PHASE DISTRIBUTION

In this section, we describe the phase distribution of squeezed and squeezed
Kerr vectors. To do this we introduce first the phase vectors and its distributions
in details.

5.1. Phase Vectors

To obtain the phase vector we consider first the Susskind–Glogower type
phase operator P= (qn + T∗T)−1/2T and try to find the solution of the following
eigenvalue equation:

P fβ = β fβ, (28)

where

fβ(z) =
∞∑

n=0

anzn =
∞∑

n=0

an

√
[n]! fn(z). (29)

We arrive at

fβ =
∞∑

n=0

an

√
[n]! fn

= a0

∞∑
n=0

βn

√
(q + [0])(q2+ [1])(q3+ [2]) · · · (qn + [n− 1])

[n]!
fn,

whereβ = |β|ei θ is a complex number. For details we refer to (Das, 1999b).
These vectors are normalizable in a strict sense only for|β| < 1.
Now, if we takea0 = 1 and|β| = 1, we have

fβ =
∞∑

n=0

einθ

√
(q + [0])(q2+ [1])(q3+ [2]) · · · (qn + [n− 1])

[n]!
fn. (30)

Henceforth, we shall denote this vector as

fθ =
∞∑

n=0

einθ

√
(q + [0])(q2+ [1])(q3+ [2]) · · · (qn + [n− 1])

[n]!
fn, (31)

0≤ θ ≤ 2π and call fθ aphase vectorin Hq.
The phase vectorsfθ are neither normalizable nor orthogonal, but form a

complete set and yield the following resolution of the identity:

I = 1

2π

∫
X

∫ 2π

0
dν(x, θ ) | fθ >< fθ |, (32)
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where

dν(x, θ ) = dµ(x) dθ. (33)

For a proof of completeness of phase vectors we refer to Das (2000).
We use the vectorsfθ to associate, to a given density operatorρ, a phase

distribution as follows:

P(θ ) = 1

2π
( fθ , ρ fθ )

= 1

2π

∞∑
m,n=0

√
(q + [0]) · · · (qm + [m− 1])

[m]!
(34)

×
√

(q + [0]) · · · (qn + [n− 1])

[n]!
ei (n−m)( fm, ρ fn).

WhereP(θ ) is positive, owing to the positivity ofρ, and is normalized∫
X

∫ 2π

0
P(θ ) dν(x, θ ) = 1, (35)

where

dν(x, θ ) = dµ(x) dθ (36)

for,∫
X

∫ 2π

0
P(θ ) dν(x, θ ) =

∫
X

dµ(x)
∞∑

m,n=0

√
(q + [0]) · · · (qm + [m− 1])

[m]!

×
√

(q + [0]) · · · (qn + [n− 1])

[n]!

1

2π

∫ 2π

0

× ei (m−n)θ dθ ( fm, ρ fn) (37)

=
∫

X
dµ(x)

∞∑
n=0

(q + [0]) · · · (qn + [n− 1])

[n]!
( fn, ρ fn)

=
∞∑

n=0

( fn, ρ fn)

= 1.

In particular, thephase distributionover the window 0≤ θ ≤ 2π for any vector
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f is then defined by

P(θ ) = 1

2π
( fθ , | f >< f | fθ )

= 1

2π
|( fθ , f )|2.

(38)

5.2. Phase Distribution of Squeezed Vector

To obtain thephase distributionover the window 0≤ θ ≤ 2π for the squeezed
vector fβ in (17) we take the density operatorρ = | fβ >< fβ | and calculateP(θ )
as follows:

P(θ ) = 1

2π
( fθ , | fβ >< fβ | fθ )

= 1

2π
|( fθ , fβ)|2.

(39)

Thephase representation( fθ , fβ) of the squeezed vectorfβ is calculated as
follows:

( fθ , fβ) =
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

e−2inθ

×
√

(q + [0])(q2+ [1])(q3+ [2]) · · · (q2n + [2n− 1])

[2n]!
(40)

× αn

√
[2n− 1]!!

[2n]!!
.

From (39) and (40) we have the phase distributionP(θ ) of the squeezed vector
fβ as

P(θ ) = 1

2π
|( fθ , fβ)|2

= 1

2π

∣∣∣∣∣
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

e−2inθ (41)

×
√

(q + [0])(q2+ [1])(q3+ [2]) · · · (q2n + [2n− 1])

[2n]!
αn

√
[2n− 1]!!

[2n]!!

∣∣∣∣∣
2

.
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5.3. Phase Distribution of Squeezed Kerr Vector

To obtain thephase distributionof squeezed Kerr vectorφK
β over the window

0≤ θ ≤ 2π we calculate thephase representation( fθ , φK
β ) as follows:

(
fθ , φ

K
β

) = [ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

e−2inθ

×
√

(q + [0])(q2+ [1])(q3+ [2]) · · · (q2n + [2n− 1])

[2n]!
(42)

×αn

√
[2n− 1]!!

[2n]!!
e

i
2γ [2n]([2n]−1)
q .

From (42) we have the phase distributionP(θ ) of the squeezed Kerr vectorφK
β as

P(θ ) = 1

2π

∣∣( fθ , φ
K
β

)∣∣2
= 1

2π

∣∣∣∣∣
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

e−2inθ

(43)

×
√

(q + [0])(q2+ [1])(q3+ [2]) · · · (q2n + [2n− 1])

[2n]!

× αn

√
[2n− 1]!!

[2n]!!
e

i
2γ [2n]([2n]−1)
q

∣∣∣∣∣
2

.

6. CONCLUSION

In conclusion, we have thus generalized the notion of squeezed vector in
a deformed Hilbert space and described its phase distribution. This notion is
then utilized to define squeezed Kerr vector, its coherent vector reprensentation,
quasiprobability distribution, and its corresponding phase distribution in the de-
formed Hilbert space.
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