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Squeezed Vector and Its Phase Distribution
in a Deformed Hilbert Space

P. K. Das
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In this paper we study squeezed vectors, squeezed Kerr vectors, and their phase distri-
butions in a deformed Hilbert space.

1. INTRODUCTION

Two-photon processes are extremely interesting in quantum optics, for the
high degree of correlation between the photons in a pair may lead to the genera-
tion of nonclassical states of the electromagnetic field such as squeezed states or
number states. This system offers a unique chance to study the interaction of a
single mode of the electromagnetic field with a source of correlated pairs of pho-
tons under controlled conditions. Squeezed states are the eigenstates of a linear
combination of annihilation and creation operators of electromagnetic field. These
are pure quantum-mechanical states of light, which have reduced fluctuations in
one field quadrature when compared with coherent states. These states are stud-
ied extensively (Mehtat al,, 1992) as they can considerably reduce noise in any
signal. These states are also known as two-photon coherent states.

In generalizing two-photon processes in a deformed Hilbert space, we face
a setback as the conventional Weyl-Heisenberg approach of defining squeezing
operator to genereate squeezed vector fails. We adopt the idea of Solomon and
Katriel (1990) to generate squeezed vector in the deformed Hilbert space.

The work is organized as follows. In Section 2, we discuss preliminaries
and notations. In Section 3, we discuss generation of squeezed veckdyslim
Section 4, we define squeezed Kerr vectotdjnits coherent vector representation
and quasiprobability distribution of squeezed Kerr vectors. In Section 5, after
briefly describing phase vectors Hq we study phase distribution of squeezed
and squeezed Kerr vectors. In Section 6, we give a conclusion.
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2. PRELIMINARIES AND NOTATIONS
We consider the set
Hq = {f @) =Y anz" whered [n]!anl? < oo],

wherep] = (1-q")/(1-q),0<q < 1.
For f,ge Hy, f(2) = Y nipanZ", 9(2) = X oo bnz", we define addition
and scalar multiplication as follows:

(f+9) @ =f@+9@ =) (an+by)2" 1)
n=0
and
(rof)@=2r0f(@=) raz" 2)
n=0

It is easily seen thaH, forms a vector space with respect to usual point-
wise scalar multiplication and pointwise addition by (1) and (2). We observe that

e4(2) = Ym0 2"/[N]! belongs toH,.
Now we define the inner product of two functiohéz) = > " a,z" andg(z) =
> byz" belonging toH as

(f,9) =) [n]'anbn. 3

Corresponding norm is given by

112 = (f, ) = [n]tjan|? < oo.

With this norm, derived from the inner product, it can be shown tHatis a
complete normed space. Henldg forms a Hilbert space.

In a recent paper (Das, 1998, 1999a) we have proved that the"gef[n]!,
n=0,1,23,...} forms a complete orthonormal set. If we consider the actions

Tfh=v[Nfo1 and T*fh =[N+ 1 fos (4)

onHg, whereT is the backward shift and its adjoilt' is the forward shift operator
onHg andf,(z) = z"/4/[n]!, then the solution (Das, 1998, 1999a) of the following
eigenvalue equation:

Tf, =af, (5)
is given by

f, = n-l2ven of . 6

&(lrf?) 2:; T (6)

We call f, acoherent vectomn Hg.
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3. GENERATION OF SQUEEZED VECTORS

Squeezed vector is generated by the actioh ef« T* on an arbitrary vector
fg in Hyq (Solomon and Katriel, 1990) and which satisfies the following equation:

(T—aT*)fs =0, @)

where
D= a2 =3 /il (2 @
} 5T T4
fo = i any/[N]! fo.
We have -

T fﬂ = i an\/WT 1:n
n=0
=Y /Il fos )
n=1
= Zan+1\/ [n+1]'v[n+1]fy
n=0

and
aTHy = Y aany/[AIT
n=0
= aan/[nlVIn+ 1]
n=0

Now from (7)—(10) we observe tha, satisfies the following difference
equation:

(10)

ans1v/[n + 111VIn + 1] = ea,_1v/[n — 111V/[nl. (11)
That is,
VIt VIn+1]
N TV CE (12)
and

Il
©

a (13)
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Hence,
8 = gg%
= a JE_JE‘ _ 2YEVIOL VBIVIE]

VAT VAT JArVET VAV
_ YEVEL VAV JSVEVE,
N GIVG) VEIVATVIZT VEIVAVE]

and so on. Thus,

a 1 [2n-—1]!
o= N/[2n [2n]!! %
and
a1=a3:a5:~-~=a2n,120.
Thus, fg satisfying (7) has the form
= X 2n — 1]
=Y e/l fo= a0y on (B2 ¢ (14)
= = [2n]!
To normalize, we have
e 2n — 1)1
1= (fg, fg) = |agl? anl : 15
(. 1) = 20l D 1™ =poy (15)

Thus, aside from a trivial phase we have

Ca -1/2
[Zl @2 [2n]” } (16)

and the squeezed vectdy takes the form

< [2n—1)! S I
fﬂ:[n;'“'z [2n]!!} 2 o @D

4. SQUEEZED KERR VECTORS
Squeezed Kerr vectaftlK in Hy is defined by

o5 =" V1, (18)

where fg in Hy is a squeezed vector given by (17),is the Kerr constant and
N = T*T, T is the backwardshift (4).
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Now,

LyN(N=1) f,s

¢f = €

12
MO n-a] e flan—1p
= |:Z| 2 [2n]!! :| nX:a [2n!! f”
(19)

o0 n[2n—1]u 00 CEET
= io: { |:§: o[ [2'[12;]']'-]” :| 12 " %eéy[zm([zml)} o

4.1. Coherent Vector Representation

To obtain the coherent vector representation of squeezed Kerr @WB
try to calculate the matrix elementy(, ¢>ﬁ'§) that contains all important information

about the vectopy;.
The matrix element is obtained by the following elegant methodl(Ki990).
We utilize the completeness relation (Das, 1998, 1999a) of coherent vectdys in

1
= —/ (@) | fu > < ful, (20)
27T ael
where

du(e) = eg(|er|?)eq(—ler|?) dgler|? dO (21)

wherea = re'?, and obtain

(forr df) = (far, Utp)

1
= I ) (Fa Ul > < fulfy) (22)
27T o1€C
1 du(ey) (fe,, f5)(for, Ufy)
= - M\ oy o' oy
27T a1€C . g
whereU = e&yN(N Y,

Now,

o0

1/2
2n — 1]
o )= eq(ioulZ)”Z[Zl '2”%]

m=0,n=0 n=0
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of ., [l2n— 1

\/[m—| [Zn]!! (fm, f2n)
= S ety ] ST
n=0 n=0 [2n]!!

1 fen—1n_, .
“Jeary e (23)

(for, Ufe,) = &gleal?) ™ 2eq(la’ %) 1/22 by [2n)(2n] - 1)("‘[:1"]? @8

and

Hence, we have

oo

(fars T)(for, Ufa,) = Z eq(Joa?) ey (leP) Y2
m=0,n=0
zn[2n—1]!! IR [2m — 1]
[2n]!! VRmry  [2m]!
%mamet%V[Zn]([zn] 1)(06[ I’(])l]ll) . (25)

Thus,

1
(fa/, (PﬂK) = 2—/ d[,L(Ol]_) (fal, fﬂ)( for, Ufal)
T a1€C

—1/2
— o 1o A op[20n — 1] 1
m=o;=oeq(|a g 1/2[;“)['2 [2n]!! } V2!

X [2m — 1] m( )n Ly[2n)([2n]-1) 1 1
[2m]l| [n]|

x / dra(en) eq(lond) 42l
a1€C

oo

~1/2
o 1ja| S o [2n — 1] 1
> el ) 1/2[2'“'2 [2n]! } Jmr

m=0,n=0 n=0
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5 /[2{;;]!1!]” o el - 1)[nl]' 22/ dyr 2 eg(—r2)r2mn

21
X / do €—2m
0
_ i (|oc’|2)71/2 i |a|2” [2n — 1! -1/2 1 [2n — 1]||
= = s [2n]!! V2 [2n]!

L -y 1 *°
y2nge” LmEn 1) /o dgr? eg(—12) (1)

x (o

[2n
Y e R DI 1 fen-y
K= =~ [2n]! J V2
« (&)Y - ﬁ /o dgX &(—X)(0)?"

-1/2
o0 n[2n — 1! 1 [2n — 1]
=2 el ”’{Zl } Jeary- fen!

X ((Y )2n 2y[4n]([4n] 1) (26)

b

where we have taken= r and utilized the facf;* dyx & *x" = [n]! (Gray and
Nelson, 1990).

4.2. Quasiprobability Distribution

Thequasiprobability distributionknown as th&) function, for the squeezed
Kerr vector is introduced in the following form:

1
Qlaz) = ;(fm, o >< bf | fur)

1
SRR
_ E K\ |2
= (T 5) 27
~1/2

_ 1y 12| =~ 2n[20 — 1] 1 [2n — 1]”
o ;eq(m' : [;M [2n]! } o\ 20l

2

x (a )Zn 2}/[4“]([4“] l)
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5. PHASE DISTRIBUTION

In this section, we describe the phase distribution of squeezed and squeezed
Kerr vectors. To do this we introduce first the phase vectors and its distributions
in detalils.

5.1. Phase Vectors

To obtain the phase vector we consider first the Susskind—Glogower type
phase operator P= (q" + T*T)~Y/2T and try to find the solution of the following
eigenvalue equation:

Pfs = pfs, (28)
where
@)=Y a2 = a/nll f@. (29)
n=0 n=0
We arrive at

fg = Zan\/ﬁfn
n=0

= +[0D(a2+[AD@+[2)--- @ +[n—-1
_ aozﬂn\/(q [0])(a* + [1])(g |[ D---(@" +[n-1] .
h=0 [n]!
wherep = ||€? is a complex number. For details we refer to (Das, 1999b).
These vectors are normalizable in a strict sense onlygfox 1.
Now, if we takeag = 1 and|8| = 1, we have

o f..  (30)

Henceforth, we shall denote this vector as
=3 \/ (@ -+ [0)(a? + [1])(q3[ 5.[2]) @+ -1
n=0 :

0 <6 < 2z and call fy aphase vectom Hg.
The phase vectoré$, are neither normalizable nor orthogonal, but form a
complete set and yield the following resolution of the identity:

T \/ (@ + [O)(e? + [1)(@® +[2) - - (@" + [n — 1)
n=0

. (31)

1 27
| — _// dv(x, 0) | fg >< fgl, (32)
21 Jx Jo
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where
dv(x, 0) = du(x) do. (33)

For a proof of completeness of phase vectors we refer to Das (2000).
We use the vector$, to associate, to a given density operagtora phase
distribution as follows:

PEO) = 5 (1. 1)

_ 1 & [@+0])--- (g™ + [m— 1])
= o> méo T (34)
@+[0)---@"+[N—1]) jp-m
X \/ [n]! e )(fmypfn)-
WhereP(0) is positive, owing to the positivity b, and is normalized
2
/ f P(9) dv(x,6) =1, (35)
X JO
where
dv(x, 6) = du(x) d6 (36)
for,
2 _ o [@+[0])--- (@™ +[m—1])
/X /O P@) dv(x, 8) = /;(du(x) m;g =
» (q+[0])-~~(q”+[n—1])i/2”
[n]l 2 0
x €M 4o (fr,, pfn) (37)

_ /xd”(x) Z(q+[0])-~-(q +[n_1])(fn,,0fn)
n=0

[n]!
= Z( fn, pfn)
n=0

= L

In particular, thephase distributiorover the window 0< 6 < 2 for any vector
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f is then defined by

1
PO) = 5 (T If >< flf))
f (38)
= )12,
2n|(f97 )|

5.2. Phase Distribution of Squeezed Vector

To obtain thephase distributiover the window O< 6 < 2x forthe squeezed
vector fg in (17) we take the density operafer= | fz >< fg| and calculaté®(0)
as follows:

1
P(@) = Z(fe, |f‘3 >< fﬂ|f9)
(39)

1
= —|(f,, f3)|°.
271|( 9, )l

Thephase representatioff,, fz) of the squeezed vectdy is calculated as
follows:

(f f): Z| |2n[2n ]” l/zie—Ziné?
v it | S

y \/(q +[0D)(9® + [11)(9® + [2]) - -- (@*" + [2n — 1])

[2n]!
flen -
N e

From (39) and (40) we have the phase distribuf{f) of the squeezed vector
fg as

(40)

PO) = 5 I(Ts, TP

1/2
— n[2n 1]” . —2in
w [Z i [2n]!! } > e (41)

1
2 0 n=0

s [0])(a?+ [1D(a®* +[2]) - - - (@*" + [2n — 1])05n [2n — 1] ’
[2n]! [2nt |~
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5.3. Phase Distribution of Squeezed Kerr Vector

To obtain thephase distributiorof squeezed Kerr vecto&K over the window
0 < 6 < 27 we calculate th@hase representatiofiy, ¢ ) as foIIows

1/2
} : n[2n l]” Eoo: —2in
fe,d)ﬂ |: 2 [Zn]” :| n=0e ”

=0

[2n]! “42)

[2n — 1] iy engen-1)
n
N 2 & '

From (42) we have the phase distributiB(®) of the squeezed Kerr vectq)ﬁ as

\/ (@+[0D(9* + [11)(9® + [2]) - -- (@*" + [2n — 1])

PO) = 5 |(t0. o)

1/2
= n[2n 1]” - —2in
|:Z 2 Bl :| ée 2ing

0

(43)

\/(q +[0D)(9® + [AD(9® + [2]) - -- (@*" + [2n — 1])
[2n]!

n ([2n =11 iy penigen-1)
X Ol —[Zn]ll eq

6. CONCLUSION

2

In conclusion, we have thus generalized the notion of squeezed vector in
a deformed Hilbert space and described its phase distribution. This notion is
then utilized to define squeezed Kerr vector, its coherent vector reprensentation,
quasiprobability distribution, and its corresponding phase distribution in the de-
formed Hilbert space.

REFERENCES

Das, P. K. (1998). Eigenvectors of Backwardshift on a Deformed Hilbert Spaeenational Journal
of Theoretical Physic87(9), 2363.

Das, P. K. (1999a). Erratum: Eigenvectors of Backwardshift on a Deformed Hilbert $peceational
Journal of Theoretical Physic33(7), 2063.



818 Das

Das, P. K. (1999b). Phase distribution of Kerr vectors in a deformed Hilbert dpgamational Journal
of Theoretical Physic38(6), 1807.

Das, P. K. (2000). Erratum: Phase distribution of Kerr vectors in a deformed Hilbert speeational
Journal of Theoretical Physic39 (4).

Gray, R. W. and Nelson, C. A. (1990). A completeness relation fogthaalogue coherent states by
g-integration.Journal of Physics A: Mathematical and Gene28| L945-L.950.

Kral, P. (1990). Kerr interaction with displaced and squeezed Fock sgitgsical Review Ai2,
4177-4192.

Mehta, C. L., Roy, A. K., and Saxena, G. M. (1992). Eigenstates of two-photon annihilation operators.
Physical Review 46, 1565-1572.

Solomon, A. I. and Katriel, J. (1990). On g-squeezed statagnal of Physics A: Mathematical and
General23, 11209-11212.



